
叙述数学建模的基本步骤,并简要说明每一步的基本要求。
数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得
到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决
策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观
事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看
作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一
般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学
方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据
所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4) 模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型
分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意
义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用: 所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。
出自:文鼎教育 >> 乐山师范学院信息与计算科学