问题 更新时间2023/4/3 12:59:00 一离散信源由0,1,2,3四个符号组成,它们出现的概率分别为3/8, 1/4,1/4,1/8,且每个符号出现都是独立的。试用两种方法求某消息2021020132022132212322100033032120332123021223310201321023201的信息量。(lb3=1.58, lb5=2.32, lb6=2.58, lb7=2.80, lb9=3.17, lb10=3.32) 答案 登录 注册 正确答案为: 此消息中,0出现14次,1出现12次,2出现22次,3出现13次,共有61个符号,故该消息的信息量为: (1)I=14lb8/3+12lb4+22lb4+13lb8=19.88+24+44+39=126.88 每个符号的算术平均信息量为: I/符号数=126.88/61=2.08(bit/符号) (2)用熵的概念来计算: H=-3/8lb3/8-1/4lb1/4-1/4lb1/4-1/8lb1/8=1.906 该消息的信息量为:I=61×1.906=116.26(bit) 出自:石家庄铁道大学 >> 石家庄铁道大学通信原理