搜题
问题   更新时间2023/4/3 12:59:00

[证明题,7.1分] 设f是格(L,≤1)到格(S,≤2)的满同态映射。证明:若(L,≤1)是有界格,则(S,≤2)也是有界格。

因(L,≤1)是有界格,设最大元为1,最小元为0。令f(1)=1’,f(0)=0’,则1’,0’∈S。因f是满设,故对任意的x’∈S,都有x∈L,使得f(x)=x’。又因为f是同态映射,因此亦是保序映射,故由0≤1x≤11,有f(0)≤2f(x)≤2f(1),即0’≤2x’≤21’,这就是说1’和0’分别是(S,≤2)的最大元和最小元。因此,(S,≤2)是有界格。
王老师:19139051760(拨打)