搜题
问题   更新时间2023/4/3 12:59:00

[证明题,7.1分] 设f是格(L,×,+)到格(S,∧,∨)的同态映射,试证明(L,×,+)的同态象是(S,∧,∨)的子格。

证明:(L,×,+)的同态象是f(L)={f(x)|x∈L}。任取s1,s2∈f(L),则有l1,l2∈L,满足f(l1)=s1,f(l2)=s2。由f是格(L,×,+)到格(S,∧,∨)的同态映射,知:s1∧s2 = f(l1)∧f(l2) = f(l1×l2),s1∨s2 = f(l1)∨f(l2) = f(l1+l2)。由(L,×,+)是格知,l1×l2∈L,l1+l2∈L,因此,f(l1×l2)∈f(L),f(l1+l2)∈f(L),即,s1∧s2∈f(L),s1∨s2∈f(L),故,f(L)对运算∧和∨封闭。(L,×,+)的同态象是(S,∧,∨)的子格。
王老师:19139051760(拨打)